
PREDICTION ERROR

The expanding role of
dopamine
Evidence increasingly suggests that dopaminergic neurons play a more

sophisticated role in predicting rewards than previously thought.
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A
s any kindergarten instructor will tell

you, reward is one of the most powerful

teachers. Some of the earliest and most

iconic examples of behavioral psychology con-

cern how animals learn, from experience, which

stimuli or actions accompany reward (Thorn-

dike, 1898; Pavlov, 1927). A century later,

computational neuroscientists have described

neural circuits that underpin such learning. These

are based on the mutual interactions between

neurons that contain the neuromodulator dopa-

mine and other neurons they connect with, par-

ticularly those in a brain region called the

striatum. The dopaminergic neurons receive

information about predicted rewards, and report

back the mismatch between those expectations

and the rewards actually received. These

“reward prediction errors,” in turn, allow the

predictions to be updated, a computation

known as model-free learning.

The problem with this well-studied frame-

work is that humans and rodents can learn about

rewards in many ways other than by direct expe-

rience (Tolman, 1948). Computationally, these

capabilities have been understood in terms of

“model-based” learning methods, which draw

on knowledge of task structure to anticipate

possible rewards that have never been directly

experienced. Due in part to the support for a

tidy, closed-loop picture of dopamine’s involve-

ment in reward prediction, researchers have

tended to assume that such capabilities arise

from some separate, more sophisticated brain

system. Now, in eLife, Brian Sadacca, Joshua

Jones and Geoffrey Schoenbaum indicate that

these more sophisticated learning capabilities

instead arise within – or at least impinge upon –

the dopaminergic learning circuit itself

(Sadacca et al., 2016).

Sadacca et al. – who are based at the

National Institute on Drug Abuse, University of

Maryland School of Medicine and Johns Hopkins

School of Medicine – recorded spiking from

dopaminergic neurons while rats performed a

task designed to defeat simple model-free learn-

ing. The task, called sensory preconditioning,

assesses the rats’ ability to associate a stimulus

(for example, a clicker) with a reward without

ever experiencing the two together (Figure 1).

To do so, a rat needs to integrate experiences

from two separate training phases. First, in a

“pre-conditioning” phase, the clicker was paired

with another neutral stimulus (for example, a

tone); then, in a “conditioning” phase, the tone

(but not the clicker) was paired with a reward.

Not only was the clicker never paired with the

reward, it was not even paired with a reward-
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predicting stimulus, since the tone’s relationship

with reward was established at a later stage.

Nevertheless, in a test phase, rats demon-

strated (by visiting a food cup where a reward

had previously been delivered) that they associ-

ated the clicker with reward. This capability is

well known; more surprising was that these

reward predictions could also be seen in the

responses of dopaminergic neurons to the

clicker. This result complicates dual-system

explanations, which state that model-based

inference occurs separately from the dopaminer-

gic reward learning system. It also speaks

against the traditional closed-loop account of

dopaminergic learning, in which the circuit

should only know about reward predictions it

has taught itself via direct pairings.

This result adds to a series of studies suggest-

ing that responses in dopaminergic neurons and

associated areas report more sophisticated

reward predictions than theory suggests (Brom-

berg-Martin et al., 2010; Daw et al., 2011).

Key challenges going forward are to understand

how this information gets into the circuit, and

what neural computations produce the informa-

tion in the first place.

These questions might have the same answer

if at least some of an animal’s sophisticated learn-

ing capacities actually build upon a dopaminergic

foundation. This perspective is supported by

work in humans that suggests that the dopamine

system also helps to produce similar integrative

inferences about rewards (Deserno et al., 2015;

Sharp et al., 2015; Doll et al., 2016). There are

several (not mutually exclusive) possibilities for

how dopaminergic learning might contribute to

these integrative predictions.

One possibility is that inferences made during

the test phase cause the rats to expect a reward

when they hear the clicker. Model-based learn-

ing theories envision that the brain retrieves suc-

cessor stimuli (here, the clicker would evoke the

tone) as a sort of mental simulation that helps to

predict reward. Evidence of such retrieval has

been demonstrated using fMRI in humans

(Doll et al., 2015). Though this mechanism need

not involve dopamine, it could: the usual dopa-

minergic learning circuit could map the evoked

representations to a reward.

The association of the clicker with the reward

could also have already been made earlier in the

experiment. Though Sadacca et al. believe this is

unlikely in their study, two broadly applicable

mechanisms for this process have been sug-

gested. One possibility, supported by a human

fMRI study of a similar sensory preconditioning

task (Wimmer and Shohamy, 2012), is that

associations between the clicker and reward

could already form in the conditioning phase

(during which the rats learn to associate a tone

with a reward). If presenting the tone called to

mind the clicker, which preceded the tone in the

first training phase, dopaminergic learning could

associate the reward that followed with both

stimuli.

Mentally rehearsing clicker-tone and tone-

reward sequences after the conditioning phase

(but before testing) could also allow the brain to

Figure 1. The activity of dopaminergic neurons helps rats to integrate separate experiences to predict when a

reward will be given. (A) Schematic of the task used by Sadacca et al. In the pre-conditioning phase, rats learn to

associate a clicker with a tone. In a subsequent conditioning phase, the rats learn to link the tone with a food

reward. In the final test phase, the rats hear the clicker, and behave as if they expect a reward. (B) Three potential

associative retrieval mechanisms that might support integrative inference about the stimulus. Left: during the

conditioning phase, presenting the tone could call the clicker to mind, allowing both stimuli to be linked to a

reward. Middle: after conditioning, the mental replay of experiences may permit the relationships between

separate sets of stimuli to be learned. Right: in the test phase, the rats may make new inferences that cause the

rats to expect a reward when they hear the clicker.
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learn the relationship between the clicker and

reward. Replay of previously experienced events

has been observed in neural recordings during

sleep and quiet rest. If the brain treated such

mock experiences like real ones – allowing them

to drive dopaminergic responding and learning

– this too could drive the integrative association

(Gershman et al., 2014).

In all, the venerable framework of dopaminer-

gic reward learning may have more explanatory

power than originally thought, as the results of

Sadacca et al. suggest that it might point toward

explanations even for cases that were thought to

challenge it.
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