
Available online at www.sciencedirect.com
The ubiquity of model-based rei
nforcement learning
Bradley B Doll1,2, Dylan A Simon3 and Nathaniel D Daw2,3
The reward prediction error (RPE) theory of dopamine (DA)

function has enjoyed great success in the neuroscience of

learning and decision-making. This theory is derived from

model-free reinforcement learning (RL), in which choices are

made simply on the basis of previously realized rewards.

Recently, attention has turned to correlates of more flexible,

albeit computationally complex, model-based methods in the

brain. These methods are distinguished from model-free

learning by their evaluation of candidate actions using

expected future outcomes according to a world model.

Puzzlingly, signatures from these computations seem to be

pervasive in the very same regions previously thought to

support model-free learning. Here, we review recent behavioral

and neural evidence about these two systems, in attempt to

reconcile their enigmatic cohabitation in the brain.
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Introduction
The reward prediction error (RPE) theory of dopamine

(DA) [1,2] has been a remarkably influential account of

neural mechanisms for learning from reward and punish-

ment. This marriage of computer science and neuro-

science posits that dopaminergic bursts and dips

transmit plasticity-modulating teaching signals to cor-

tico-striatal circuits, training the selection of rewarded

actions and avoidance of punished ones.

The computational end of this theory is known as

‘model-free’ reinforcement learning (RL), and derives

its name from the fact that the learner need not attempt

to understand the sequential transition structure of the

task (a ‘world model’) to maximize reward. Instead of

utilizing this structure to assess future outcomes, these
www.sciencedirect.com
models learn which actions are beneficial through

direct experience with their rewarding consequences.

This learning scheme has clear benefits in terms of

computational efficiency, but there are costs as well.

The capacity to learn about the world’s structure,

lacking in these approaches, is most beneficial (and

empirically most apparent) when flexible changes in

behavior are required, for example, when goals or

aspects of the environment change, necessitating rapid

reevaluation.

Psychologically, model-free algorithms reinvent Thorn-

dike’s [3] early law of effect, the reinforcement principle

according to which rewarded actions tend to be repeated.

In many ways, the refutation of this demonstrably incom-

plete behaviorist principle sowed the seeds of the cog-

nitive revolution [4]. Even rats can do more than repeat

successful actions: they can, for instance, learn the layout

of a maze (a prototypical example of a world model) and

plan novel routes in it.

However, it is easier to demonstrate that the brain is smart

than it is to understand how it manages this sophisti-

cation. Fortunately, just as model-free RL provides a

theory specific enough to be refuted, the engineering

literature offers a second class of algorithms that have

recently been identified as promising candidates for for-

malizing a more flexible alternative [5,6,7�]. Such ‘model-

based’ RL approaches learn the sequential contingencies

of events and actions in a task (which outcomes follow

which actions, e.g. where different paths in a maze lead),

which can be used adaptively and dynamically to com-

pute ideal actions by simulating their consequences. It is

this sequentially structured world model, and its use in

forward-looking computations, that distinguish model-

based from model-free RL.

Here, we review recent efforts that leverage model-based

methods to uncover the neurobiological underpinnings of

more flexible decision making, and to dissociate them

from their putative model-free counterparts.

From goals and habits . . .
The model-based versus model-free dichotomy was pro-

posed to capture a longstanding distinction in psychology

between two classes of instrumental behavior known as

goal-directed and habitual [5,8]. This distinction is oper-

ationalized with tasks that use revaluation probes, such as

training an animal to lever-press for food when hungry,

then testing performance when full. Revaluation inter-

rogates whether choice of an action (lever-pressing) is

affected by consideration of its outcome (the food, now
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mailto:nathaniel.daw@nyu.edu
http://dx.doi.org/10.1016/j.conb.2012.08.003
http://dx.doi.org/10.1038/nn1560
http://dx.doi.org/10.1016/S0893-6080(99)00046-5
http://www.sciencedirect.com/science/journal/09594388


1076 Decision making
worthless) or merely determined by previous reinforce-

ment (which occurred when hungry). If behavior instantly

adjusts to reflect the new value of the outcome that the

action would obtain, this demonstrates that the choice is

‘goal-directed’, that is, derived from a representation of the

action’s specific consequences, or in RL terms, model-

based. Insensitivity to revaluation instead indicates

‘habits’, choices made without regard for any representa-

tion of outcome identity but instead selected based on

previously realized value, as with model-free RL.

In experiments, each account prevails under different

circumstances: animals can either respect or ignore the

new outcome value. Together with lesions dissociating

these functions (below) and the strong, pre-existing

theory associating DA and model-free RL, these revalua-

tion results suggested that the brain contained separate,

competing systems for model-based and model-free RL

[5]. This view also offers a theoretical explanation for

when each approach should dominate. Given the esti-

mates from both systems, one favorable strategy is to

select the least uncertain among them [5]. A recent theory

framed arbitration more explicitly in terms of the costs

(time) and benefits (better reward harvesting) of perform-

ing model-based evaluation [9�]. The newer formulation

has stronger decision-theoretic foundations and better

process-level plausibility, but the accounts are similar

in effect because the reward increment expected for

model-based evaluation depends on uncertainty. Thus

both frameworks correctly predict many circumstances in

which putatively model-free behavior dominates, in-

cluding after overtraining [10] and in conditions when

action-reward contiguity is low [11] or reward variability is

high [12�], as well as one direct test of uncertainty’s role in

arbitration [13]. The cost/benefit analysis (specifically,

the time cost of model-based evaluation) may also explain

why chronic stress in rats [14] and acute stress in humans

[15,16] shift both species toward habitual behavior.

The revaluation assay can dissociate not only behavior

but also its neural underpinnings in rats [8]. Recently, this

approach has been extended to humans, suggesting con-

servation of brain and behavior across species [17].

Lesions in the rodent indicate that integrity of the dor-

solateral striatum is key for the formation of habitual

behavior [18]. The role of (at least this portion of) striatum

resonates with the model-free RPE theory of its phasic

DA input, which knockout and optogenetic studies

demonstrate is necessary for some measures of behavioral

conditioning [19,20].

The more puzzling counterpart to these results, however,

is that goal-directed (putatively model-based) behavior

requires adjacent dorsomedial striatum [21]. It is difficult

to reconcile the structural similarity of these parts of

striatum with the substantial differences in their theo-

rized computations. Thus, these results paint a confusing
Current Opinion in Neurobiology 2012, 22:1075–1081
picture, whereby a DA-rich cortico-striatal loop, analo-

gous to that commonly thought to implement model-free

RL, appears to be involved additionally in model-based

RL. More particularly, standard model-based RL has no

use for an RPE of the sort usually associated with stria-

tum’s DA input, and instead uses quite different teaching

signals [22]. One route to a solution might be potential

differences in the properties of the areas’ DA inputs.

Indeed, different striatal regions are irrigated by dissoci-

able groups of midbrain DA neurons [23]. However,

relatively few electrophysiological recordings have

suggested systematic variation in signaling properties

across them [24,25], and the interpretation of such vari-

ation can be further complicated by challenges in identi-

fying which cells are dopaminergic [26].

A similarly mixed picture arises from studies investigating

DA’s causal effects in revaluation tasks. Indeed, habits

can be induced using DA-agonizing drugs of abuse in

place of natural rewards like food [27]; while for natural

rewards, deafferention of DA cells targeting dorsolateral

striatum [28], and deletion of NMDA receptors in DA

neurons in knockout mice [29] prevent transition from

goal-directed to habitual behavior. Conversely, pharma-

cological blockade of DA has no effect on measures of

goal-directed instrumental learning [30] at doses that

affect (presumably model-free) Pavlovian conditioning.

On the other hand, recent results using a human task

inspired by traditional associative learning models of the

revaluation paradigm seem to suggest a counterintuitive

role for DA in goal-directed rather than habitual behavior

[31,32]. One possibility is that these results reflect DA’s

involvement in (and goal-directed behavior’s reliance on)

prefrontal cognitive functions besides reinforcement,

such as working memory. However, unlike the standard

devaluation paradigm, the central manipulation of this

task — involving different combinations of the same

stimuli as both cues and outcomes for responses — is

not clearly interpretable in terms of model-based and

model-free computations, so these results may not easily

generalize.

. . . to model-based and model-free RL
Indeed, model-based versus model-free, as the key

dimension distinguishing learning strategies, extends

beyond its proposed operationalization in goal-directed

and habitual behaviors. The computational distinction

applies also, for instance, in Pavlovian conditioning,

spatial navigation, and other cognitive tasks, especially

those inspired by the engineering literature where it

arose. Accordingly, numerous recent studies, mostly

using fMRI, have aimed explicitly to dissociate model-

based from model-free RL using learning tasks inspired

by the computational RL literature. These can roughly

be grouped into two classes. One is sequential decision

tasks — mazes or more abstract multistep sequences —

in which model-based methods can learn the sequential
www.sciencedirect.com
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Sequential task dissociating model-based from model-free learning. (a) A two-step decision-making task [33�], in which each of two options (A1, A2) at

a start state leads preferentially to one of two subsequent states (A1 to B, A2 to C), where choices (B1 versus B2 or C1 versus C2) are rewarded

stochastically with money. (b and c) Model-free and model-based RL can be distinguished by the pattern of staying versus switching of a top level

choice following bottom level winnings. A model-free learner like TD(1) (b), tends to repeat a rewarded action without regard to whether the reward

occurred after a common transition (blue, like A1 to B) or a rare one (red). A model-based learner (c) evaluates top-level actions using a model of their

likely consequences, so that reward following a rare transition (e.g. A1 to C) actually increases the value of the unchosen option (A2) and thus predicts

switching. Human subjects in [33�] exhibited a mixture of both effects.
transition structure and leverage it to evaluate actions

(Figure 1) [22,33�,34,35�,36,12�,37�,38�,39]. The second

involves explicit or implicit counterfactual structure,

where information about rewards not actually received

can be inferred or observed [40–42,13,43,44]. A typical

example is a serial reversal contingency, where a drop in

the value of one option implies an increase in the other’s

value. Purely reinforcement-based model-free RL would

be blind to such structure. Note, however, that while

such tasks go beyond model-free RL, they do not as

directly exercise the key affirmative features of model-

based RL as we have defined it, that is, the computation

of values using a sequential transition model of an

action’s consequences.

From both sorts of studies, the overall sense is that model-

based influences appear ubiquitous more or less wherever

the brain processes reward information. The most

expected of these influences are widespread reports about

model-based value signals in ventromedial prefrontal

cortex (vmPFC) and adjacent orbitofrontal cortex

(OFC), which have previously been identified with

goal-directed behavior using devaluation tasks [45,46].

vmPFC has been proposed to be the human homologue

of rat prelimbic cortex, which is required for goal-directed

behavior [8]. OFC is also implicated in model-based

Pavlovian valuation in rats and goal values in monkeys

[47,48], though understanding this area across species and

methods is plagued by multiple factors [49]. More unex-

pectedly, several reports now indicate that RPE correlates

in the ventral striatum — long thought to be a human

counterpart to the DA response and thus a core com-

ponent of the putative model-free system — also show
www.sciencedirect.com
model-based influences [33�,34,44]. Even DA neurons,

the same cells that launched the model-free theories due

to their RPE properties [1,2], communicate information

not available to a standard model-free learner [41].

The harder part of this hunt, then, seems to be for neural

correlates of exclusively model-free signals, which are

surprisingly sparse given the prominence of the model-

free DA accounts. The most promising candidate may be

a region of posterior putamen that has been implicated in

extensively trained behavior in a habit study [17] and a

sequential decision task [37�], and may correspond to the

dorsolateral striatal area associated with habits in rodents

[18]. The foundation of both fMRI results, however, was

overtraining (a classic promoter of habits), rather than

whether these areas reflect values learned or updated by

model-free methods. Indeed, value correlates in a nearby

region of putamen have been reported to follow model-

based rather than model-free updating using the compu-

tational definition [34].

A different, promising path for isolating model-based RL

is neural correlates related to the model itself. Repres-

entations of anticipated future states or outcomes —

rather than just their consequences for reward — are what

defines model-based RL. Hippocampal recordings in the

rat have shown evidence of forward model ‘lookahead

sweeps’ to candidate future locations at maze choice

points [35�]. These data fit well with the spatial map-

encoding properties of hippocampus [50], and may permit

striatum to signal value for simulated rather than actually

experienced outcomes [36]. Hippocampus is similarly

implicated in a study that examines learning predictive
Current Opinion in Neurobiology 2012, 22:1075–1081
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world models outside the context of a decision task [51]. A

number of cortical areas have also been observed with

correlates related to model learning [22] and evaluation

[34]. Work in learning tasks with task-relevant hidden

structure may also speak to the construction of world

models [52]. These studies have implicated the lateral

PFC, an area often associated with working memory

function, in discovery of this structure.

The way forward
Why the ubiquity of evidence for model-based RL?

Several factors probably contribute, all of which point

to important opportunities for progress.

First, the resolution and other limitations of the BOLD

signal may conceal distinctions that would be visible

using more invasive techniques. The explosion of human

studies explicitly examining model-based RL is recent

enough that analogous animal electrophysiological stu-

dies are largely not yet available. A strength of fMRI is to

develop tasks and analyses, and to locate areas for further

study; the time is now ripe to test similar tasks in animals.

For instance, further dissociations might be found in the

signaling properties of different DA cell groups and

projections [23], potentially elucidating the potential

co-expression of model-based and model-free signals

by DA cells.

Second, the brain’s RPE systems may be smarter than

they have been made out to be, yet still essentially model-

free. Of the different characteristics that have been taken

as hallmarks of model-based RL, some are easier than

others to accommodate in a lightly modified model-free
Figure 2

+

δ

-
-+

Learning through value generalization (left) and model-based forward plannin

(lever-press) and received no reward, and so updates its internal choice val

unchosen value’s option is represented on the same scale, inverted, it is im

model-free updating over a modified input, and does not involve explicitly c

model-based RL approach to a maze task (right), the rat has an internal repre

candidate route to the reward.

Current Opinion in Neurobiology 2012, 22:1075–1081
system. In particular, a model-free learner can generalize

learning from one state to another, without additional

experience, if its inputs corresponding to those states

overlap (Figure 2). This is a particularly plausible expla-

nation for seemingly model-based inference in serial

reversal and similar tasks [40,41,44], as indeed the authors

of some of these studies have pointed out. If counter-

factual updating in these tasks occurs implicitly, due to

generalization, then it would not involve forward model-

ing of future states. In this respect, tasks involving

sequential contingencies are stronger and more canonical

tests of model-based RL, but variants of the same repres-

entational trick can in principle apply even there [53]. For

instance, if actions are represented in terms of their

associated outcomes — for instance, if the representation

for a lever that produces food overlaps with that for the

food itself — and if these inputs (themselves now, in

effect, a sort of world model) are mapped to values using

even model-free RL, then the learned value will be

substantially shared between the lever and the food. In

this case, if the food is devalued, the lever-press value will

also decline immediately, and the resulting behavior will

appear goal-directed. This approach might help to

explain the involvement of similar striatal circuits in both

goal-directed and habitual behavior. More elaborate ver-

sions of this scheme can apply to arbitrary sequential

tasks, but such a strategy is easier to spot, and potentially

to rule out, in tasks with deeper sequential structure and

changing transition contingencies [34].

Third, there may be hitherto unanticipated crosstalk or

integration between model-based and model-free sys-

tems. It is reasonable to imagine that model-based
Current Opinion in Neurobiology
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capacities evolved on top of an earlier model-free system,

rather than separately and in parallel. One related

proposal that has received some recent support [54,55]

is that explicit representations (putatively PFC- and

hippocampus-dependent) can directly bias an underlying

model-free learner, permitting higher order contingency

information to be learned by the model-free architecture

[56]. A model-based system in the brain might similarly

leverage a model-free learner, as with some model-based

algorithms that incorporate model-free quantities in order

to reduce computational overhead [57–59]. Different

modes of behavior may simply reflect different aspects

of a more complex, integrated learning system.

For example, there is evidence for one type of model-based

learning that embeds a Pavlovian system, giving rise to

some aspects of both sorts of behavior simultaneously [60�].

The explosion of model-free RL approaches in psychol-

ogy and neuroscience has led to tremendous progress over

the past 15 years. Model-based approaches hold a similar

promise, but with their complexity comes the need for

close attention to the specific computations and predic-

tions these models make, and a re-evaluation of their

relationship with established model-free approaches.
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